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Abstract

Fairness in clinical decision-making is a critical element of health equity, but assessing
fairness of clinical decisions from observational data is challenging. Recently, many fairness
notions have been proposed to quantify fairness in decision-making, among which causality-
based fairness notions have gained increasing attention due to its potential in adjusting for
confounding and reasoning about bias. However, causal fairness notions remain under-
explored in the context of clinical decision-making with large-scale healthcare data. In
this work, we propose a Bayesian causal inference approach for assessing a causal fairness
notion called principal fairness in clinical settings. We demonstrate our approach using
both simulated data and electronic health records (EHR) data.

Keywords: health equity, causal fairness, causal inference, potential outcomes, clinical
decision-making

1. Introduction

Assessing fairness in clinical decision-making is an important element of equitable health
care. Decisions are made by clinicians on a daily basis that directly impact patient care,
but how these decisions are made is a complex process. While the medical ideal is to base
decisions on a patient’s health condition, this is not the reality. Gender, race, ethnicity,
socioeconomic status, and other sensitive attributes can influence clinicians’ decision-making
process, raising important concerns about inequity in health and health care (Dehon et al.,
2017; FitzGerald and Hurst, 2017; Aberegg and Terry, 2004; van Ryn and Burke, 2000).

There are many perspectives on how to quantify fairness. A major distinction among the
existing fairness criteria is the use of causal reasoning. Associational fairness notions, such
as statistical parity (Dwork et al., 2012), calibration (Chouldechova, 2017), and accuracy,
do not rely on causal reasoning and estimate fairness based on observed data alone. On the
other hand, causal fairness notions, such as counterfactual fairness and path-specific causal
fairness, rely on knowledge about the data generating process (e.g., a structural causal
model) to assess fairness. Serious concerns have been raised about associational fairness
because they ignore the confounding effect and as a result, multiple fairness notions can’t
be simultaneously satisfied on a given dataset (Rahmattalabi and Xiang, 2022; Makhlouf
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et al., 2020; Loftus et al., 2018). Given the large number of existing fairness notions, what
fairness metrics are appropriate for clinical settings remains a question.

In medicine, the idea of fairness is expressed as health equity. Health equity can be
defined in multiple ways. According to Communities in Action: Pathways to Health Equity
(National Academies of Sciences, Engineering, and Medicine, 2017), “health equity is the
state in which everyone has the opportunity to attain full health potential and no one is
disadvantaged from achieving this potential because of social position or any other socially
defined circumstance.” Based on this definition of health equity, we explore the existing
fairness notions to discover potential metrics for assessing fairness in health care.

The contribution of this work is as follows. First, we propose a novel Bayesian causal
inference approach for estimating a causal fairness notion called principal fairness. Sec-
ond, our simulation experiments comparing non-causal fairness notions to principal fairness
suggest that principal fairness, which evaluates the fairness of decisions among patients
with similar health potential, maybe a more appropriate fairness metric in the domain of
healthcare. Third, we demonstrate the proposed approach in assessing the fairness of clin-
ical decisions in a real medical dataset where we discover gender and racial disparities in
assigning revascularization treatment for patients with coronary artery disease.

2. Problem Formulation

As a working example, assume the research question is whether a treatment for heart disease
is assigned in a fair way between men and women. The sensitive attribute is the patient’s
gender, and the outcome of interest is whether the patient experiences a heart attack within
one year post-treatment.

Principal fairness is introduced by Imai and Jiang (2021). It works in the potential
outcomes framework of causal inference (Rubin, 1974; Imbens and Rubin, 2015). Denote
the variables in the clinical decision-making process as follows. For the i-th patient, let
Ai ∈ {0, 1} be the sensitive attribute (e.g., gender), Di ∈ {0, 1} be a binary medical decision
on a treatment, and Xi ∈ RM be an M -dimensional vector of observed pre-treatment
covariates (e.g. diagnoses, medications, and lab measurements). Finally, let Yi ∈ {0, 1} be
a binary health outcome (e.g., heart attack following treatment), where Yi = 1 means the
outcome occurs (e.g., the patient experiences a heart attack). Let Yi(d) be the potential
value of the outcome when the decision is Di = d. For a binary decision, there are two
potential outcomes for each patient, Yi(0) and Yi(1). For example, Yi(0) = 1 means the i-th
patient would have a heart attack within one year if not treated with heart surgery, and
Yi(1) = 0 means that the same patient would not have a heart attack for at least one year
if with surgery.

The data live in a joint distribution p(D,A,X, Y (0), Y (1)) with half of the potential
outcomes missing. The missingness is due to the fact that a patient can only be observed
under one of the two possible treatments, surgery (Di = 1) or no surgery (Di = 0). Thus,
only the potential outcome following the observed treatment is observed (Yi = Yi(Di)).
We introduce ways to estimate the missing potential outcome following Bayesian Causal
inference. For now, assuming both potential outcomes are handed over to you.

We first define the health potential of a patient. A patient’s health potentialHi is defined
as the joint of all potential outcomes, Hi = (Yi(0), Yi(1)). For a binary treatment and a
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binary outcome, there are four principal strata, (Yi(0), Yi(1)) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)},
which we name stable, treatable, better-without, and severe respectively.

Principal fairness states that a decision satisfies principal fairness if the decision is
independent of the sensitive attribute conditioning on the principal strata, p(Di |Hi, Ai) =
p(Di |Hi). In our example, this means that if men and women have an equal chance of
being treated conditioning on they have the same health potential, then the decision is fair.
This definition allows patients with different health potentials (stable vs severe) to have a
different probability of being treated.

Based on the definition of principal fairness, the level of violation of principal fairness
can be measured by comparing the decision probabilities between the two sensitive groups
within a stratum, that is,

∆(h) = p(Di = 1 |Ai = a,Hi = h)− p(Di = 1 |Ai = a′, Hi = h). (1)

When ∆(h) = 0 ∀h, then principal fairness is satisfied across all strata. Otherwise,
principal fairness is violated.

3. Methods

We develop a Bayesian causal inference method to estimate the principal fairness of a clinical
decision. The observed data is D = {Di, Ai,Xi, Yi}ni=1. Because only one potential outcome
is observed in the data, Yobs,i = Yi(Di), we need to estimate the missing potential outcome
Ymis,i = Yi(1−Di), before we can estimate principal fairness. The missingness of potential
outcomes is known as the fundamental problem of causal inference (Holland, 1986). The
potential outcomes are identifiable under standard causal inference assumptions.

Three assumptions are needed for the potential outcomes to be identifiable from obser-
vational data: ignorability, overlap, and consistency(Rubin, 1974).

1. Ignorability: (Y (0), Y (1)) ⊥⊥ D |X

2. Overlap: 0 < p(Di = 1 |Xi = x) < 1 ∀x

3. Consistency: Yi(Di) = Yi

Ignorability states that there is no unobserved confounding. Under ignorability, the
distribution of the potential outcomes are identifiable from the observed data, that is,
E [Yi(d)] = EX [EY [Yi |Xi, Di = d]]. Overlap assumes that the treatment and the control
have non-zero probabilities of being assigned to patients. Violation of overlap leads to poor
estimation of the potential outcomes. Consistency assumes that the observed outcome is
equal to the potential outcome corresponding to the observed treatment.

Under the three assumptions for causal identification, we can proceed with the causal
estimation of potential outcomes. We follow the idea of Bayesian causal inference that treats
the estimation problem as a missing data problem (Rubin et al., 2018). The main advantage
of Bayesian causal inference is that it models the data distribution in a generative way using
probability distributions, which inherently estimates the uncertainty of the causal effect of
interest.
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The posterior predictive distribution of Ymis is Pr(Ymis |X,A, Yobs, D). Applying the
conditional probability formula, we have

Pr(Ymis |X,A, Yobs, D) =
Pr(X,A, Y (0), Y (1))Pr(D|X,A, Y (0), Y (1))∫

Pr(X,A, Y (0), Y (1))Pr(D|X,A, Y (0), Y (1))dYmis
(2)

Under ignorability,

Pr(D|X,A, Y (0), Y (1)) = Pr(D|X,A).

Thus, Eq. 2 becomes

Pr(Ymis |X,A, Yobs, D) =
Pr(X,A, Y (0), Y (1))∫

Pr(X,A, Y (0), Y (1))dYmis
(3)

Eq. 3 reveals that under ignorability, all we need to model is Pr(X,A, Y (0), Y (1)),
a distribution of only the pre-treatment variables reflecting characteristics of the patient,
independent of the treatment.

We assume the distributions of (X,A, Y (0), Y (1)) for each individual i are independent
and identically distributed (iid). Given some model parameter θ and prior distribution over
the parameter p(θ),

Pr(X,A, Y (0), Y (1)) =

∫ [
N∏
i

f(Xi, Ai, Yi(0), Yi(1) | θ)

]
p(θ)dθ. (4)

We use the chain rule to factorize f(Xi, Ai, Yi(0), Yi(1) | θ) as follows:

f(Xi, Ai, Yi(0), Yi(1) | θ) = f(Yi(0), Yi(1) |Xi, Ai, θy0y1)f(Xi, Ai | θxa), (5)

where θy0y1 is the parameter specifying the conditional distribution of Yi(0), Yi(1) given Xi

and Ai, and θxa is the parameter specifying the marginal distribution of Xi and Ai. Both
θy0y1 and θxa are functions of θ. This factorization allows us to predict the missing potential
outcomes Ymis from the observed information (X, A and Yobs).

Now we can apply the chain rule again to factorize f(Yi(0), Yi(1) |Xi, Ai, θy0y1) into two
parts based on treatment assignment. Let I1 and I0 denote the set of indices in the treated
and control group respectively. For the treated group (i ∈ I1), that is,

f(Yi(0), Yi(1) |Xi, Ai, θy0y1) = f(Yi(0) |Xi, Ai, Yi(1), θy0 | y1)f(Yi(1) |Xi, Ai, θy1). (6)

For the control group (i ∈ I0), that is,

f(Yi(0), Yi(1) |Xi, Ai, θy0y1) = f(Yi(1) |Xi, Ai, Yi(0), θy1 | y0)f(Yi(0) |Xi, Ai, θy0). (7)

In order to impute the missing potential outcomes, the following (conditional) indepen-
dence relationships are usually assumed:
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f(Yi(0), Yi(1) |Xi, Ai, θy0y1) = f(Yi(0) |Xi, Ai, θy0)f(Yi(1) |Xi, Ai, θy1) (8)

and

p(θy0y1) = p(θy0)p(θy1). (9)

Eq. 8 holds under the assumption that the two potential outcomes are conditionally
independent given Xi, Ai and the parameter governing the conditional distribution. Eq. 9
holds under the assumption that the parameters governing these conditional distributions
are independent a priori.

Based on Eq. 8 and Eq. 9, we can build probabilistic models to estimate the missing
potential outcomes and compute the fairness metric.

The algorithm is summarized as follows.

Algorithm 1: Bayesian Principal Fairness Assessment Algorithm

Input: D = {Di, Ai,Xi, Yi}ni=1

Output: ∆(h) ∀h
Estimate qϕ(θy0) with VI
Estimate qϕ(θy1) with VI
for s← 1 to S do

θy0 ∼ q(θy0)
θy1 ∼ q(θy1)

Yi(0) ∼ Bern
(
p(Yi(0) |Xi, Ai, θy0)

)
, i ∈ I1

Yi(1) ∼ Bern
(
p(Yi(1) |Xi, Ai, θy1)

)
, i ∈ I0

Assign Hi = (Yi(0), Yi(1))
Compute ∆(h) ∀h

end

There are two parameters to be estimated: θy0 , the parameter for estimating the po-
tential outcome under no treatment, and θy1 , the parameter for estimating the potential
outcome under treatment. We fit Bayesian logistic regression models to estimate the param-
eters. We use mean-field variational inference (VI) to approximate the posterior distribution
of the parameters (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al., 2017). Vari-
ational inference turns the inference problem into an optimization problem. The inference
procedure for θy0 and θy1 is essentially the same, so we use θy0 to illustrate. Set qϕ(θy0)
to be a variational family of approximate posterior distributions, indexed by variational
parameters ϕ. Variational inference aims to find the setting of ϕ that minimizes the KL
divergence between qϕ and the posterior. Minimizing this KL divergence is equivalent to
maximizing the evidence lower bound (ELBO),

Eqϕ [log p(θy0) + log p(y | θy0)− log qϕ(θy0)]

The ELBO sums the expectation of the log joint, which consists of three components – the
log prior, the log-likelihood and the entropy of the variational distribution.
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To approximate the posterior we set the variational family to be the mean-field family.
The mean-field family factorizes over the latent variables, where j indexes covariates:

qϕ(θy0) =
∏
j

qϕ(θ
j
y0)

We posit a Gaussian distribution over the variational distribution,

q(θjy0) = N (µj , σ
2
j )

Our goal is to optimize the ELBO with respect to ϕ = {µ, σ2}.
To train the model, we perform stochastic gradient ascent using Adam (Kingma and

Ba, 2017). We approximate gradients using the reparameterization trick (Rezende et al.,
2014; Kingma and Ba, 2017).

Code is available in the Supplementary materials for review, and will be made open-
source at https://github.com/bayesPF4Health.

4. Simulation

We simulate a dataset to show that the proposed algorithm can correctly assess whether a
decision satisfies principal fairness, while associational fairness notions fail to do so. Simu-
lation is necessary for evaluation because the ground truth for both potential outcomes are
available in a simulation, and never available in any real datasets.

Setup We simulate the sensitive attribute (e.g. gender) as Ai ∼ Bern(0.5), and pre-
treatment covariates as Xi ∼ Nm(0, 1), m = 100. Then we simulate the two potential out-
comes as Yi(d) ∼ Bern(σ(f(Xi, d))), where d ∈ {0, 1}. Notice that the potential outcomes
does not depend on A, which means that no group is inherently healthier or sicker than
others given all measured covariates X. This is an essential assumption in principal fairness
(Imai and Jiang, 2021). The principal stratum for each individual Hi is assigned based on
each individual’s joint potential outcomes. Then, treatment is assigned as Di ∼ Bern(ph,a),
where ph,a is the decision probability for principal stratum h and sensitive attribute a.
To make the treatment violate principal fairness, we simulate the treatment such that the
probability of being treated is 20% higher for males than females in the stable stratum, and
20% lower for males than females in the severe stratum. Details about the simulation setup
are in the Appendix.

Fairness metrics We compare findings from principal fairness against findings from three
associational fairness metrics. We show that a decision that violates principal fairness can
be fair, or unfair based on other fairness metrics. The associational fairness notions are as
follows.

1. Statistical parity: p(Di |Ai) = p(Di)

2. Calibration: p(Yi |Di, Ai) = p(Yi |Di)

3. Accuracy: p(Di |Yi, Ai) = p(Di |Yi)
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4.1. Results

The results of the simulation are shown in Figs. 1 and 2. First, the proposed algorithm is
able to detect the unfair decision and estimate the level of unfairness ∆(h) , which rely on
the estimation of the principal strata (Fig. 2). The proposed algorithm correctly identified
the two strata (stable and severe) where decisions were made unfairly. Specifically, it is
estimated that women are about 20% less likely to receive the treatment than men in the
stable group, and about 20% more likely to receive the treatment in the severe group.

Figure 1: Associational fairness metrics from the simulation

Figure 2: Fairness results from the simulation. Left: Principal fairness decision probabilities
and level of violation metric ∆(h). Right: Proportion of principal strata. The
proposed algorithm can detect unfair decisions and estimate levels of violation.

The results of the three associational fairness notions applied to the same dataset are
shown in Fig. 1. Given the decision is unfair based on the simulation setup, statistical parity
fails to detect the bias. Though this result is specific to this simulation, it is not hard to
imagine other situations where this metric can fail to serve its purpose. For example, if more
men than women admitted to the hospital are susceptible to heart attack, then a decision
satisfying statistical parity can still be unfair because more men ought to be treated.

Calibration finds that the probability of having a heart attack is higher for women
than men in the treatment group but lower in the control group. This metric has the
same limitation as statistical parity that it fails to consider whether there is a difference in
the underlying risk of heart attack between men and women. It also fails to account for
the fact that which potential outcome is observed depends on the treatment assignment
mechanism in the observational data. Furthermore, while the goal is to assess decision
fairness, this metric focuses on outcome probability rather than decision probability, making
it less intuitive to interpret.
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Accuracy finds that the treatment is more likely to be received by women than men
in the heart attack group, but the opposite is true in the no heart attack group. It is
unclear whether the treatment is assigned more often to men or women given the conflicting
messages from the two subgroups. Given that this metric also uses observed outcomes rather
than potential outcomes for assessing fairness, above mentioned limitations also apply here.

The simulation confirms that the proposed algorithm is able to estimate principal fair-
ness, and suggests that principal fairness is potentially a better metric than associational
fairness metrics because it assesses fairness among patients with similar underlying health
potential.

5. Empirical Study

We assess the fairness of clinical decisions on revascularization procedures in patients with
coronary artery disease (CAD). Heart disease is the leading cause of death for men, women,
and people of most racial and ethnic groups in the United States (Centers for Disease Control
and Prevention, National Center for Health Statistics, 2022). Coronary heart disease is the
most common type of heart disease, killing 382,820 people in 2020 in the United States–
that’s 1 in every 10 deaths (Centers for Disease Control and Prevention, National Center
for Health Statistics, 2022; Tsao et al., 2022). Revascularization procedures, including
percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG), are
common clinical procedures for treating CAD. Women, African Americans, and Hispanic
populations have been found to have lower odds of receiving revascularization treatments
and experience worse outcomes (Zea-Vera et al., 2022; Gusmano et al., 2019; Brown et al.,
2008; Li et al., 2013). In this example, we apply the proposed algorithm along with other
associational fairness metrics to assess the gender and racial fairness of revascularization
treatments using EHR data.

5.1. Study Design

Database Data for this study come from an EHR database with over 6 million patient
records collected in an academic medical center in a metropolitan area in the United States.
The database is formatted according to Observational Health Data Sciences and Informat-
ics (OHDSI) Observational Medical Outcomes Partnership Common Data Model (OMOP
CDM) version 5 (Hripcsak et al., 2015).

Cohort definition The coronary artery disease (CAD) cohort consists of two groups, the
treatment group and the control group. The treatment group is defined as patients treated
with either PCI or CABG. The inclusion criteria include patients with no prior PCI or
CABG treatment, and patients with at least one coronary arteriorsclerosis diagnosis within
one year prior to treatment. The index date is the date of the treatment. For patients
with multiple treatments in their records, only the earliest one is included. The control
group consists of patients who meet the inclusion criteria but did not have either PCI or
CABG. The index date for the control group is the earliest clinical visit with a coronary
arteriorsclerosis diagnosis.

Feature extraction The primary outcome of interest is myocardial infarction (MI) within
one year post index date. Pre-treatment patient features were extracted, including demo-
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Figure 3: Associational Fairness (Gender) of decisions on revascularization.
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Figure 4: Gender fairness of decisions on revascularization. Left: (Gender) principal fair-
ness. Right: Estimated proportion of principal strata in the cohort.

graphics (race, gender, age on index date), one-year diagnoses, and one-year medications.
Patients with missing race or gender were excluded from the study. The final cohort consists
of 64, 279 patients, including 14, 366 (22.3%) in the treatment group, and 429 features.

5.2. Results

Gender fairness Fig. 4 presents the fairness assessment with respect to gender. All
four fairness metrics detect differences in the delivery of revascularization across gender,
though the interpretations are different. Statistical parity indicates that male patients
are more likely to receive treatment than female patients. Calibration indicates that the
health outcome (heart attack) happens at a higher rate for male patients than for female
patients in the one of the two treatment groups. Accuracy indicates male patients are
more likely to receive the treatment than female patients in one of the two outcome groups.
The differences shown by these metrics do not allow conclusions to be made regarding the
fairness of treatment assignment, because whether there is any health difference at the
baseline between men and women is not known. Principal fairness indicates that male
patients are more likely to receive the treatment than female patients, even if they would
benefit (or be harmed) equally from the treatment.

The principal strata proportion shows no distinctive difference between men and women
(Fig. 4), or between Black and non-Black patients(Fig. 5). Most patients are in the stable
stratum. This is surprising given the the time window for outcome to happen is one year.
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Racial fairness All four fairness metrics find that Black patients are less likely to be
treated with revascularization (statistical parity, accuracy, and principal fairness), and more
likely to experience heart attack (calibration). The results are included in the Appendix.
Fig. 5 presents the fairness assessment with respect to race.

6. Discussion

In this study, we develop a model to explore the potential of a causal fairness notion called
principal fairness in assessing the fairness of treatment decisions.

Limitations There are several limitations to this approach. First, the proposed model
for assessing principal fairness relies on assumptions for causal identification. For example,
ignorability assumes all factors that contribute to the risk of the outcome are available. This
is an untestable assumption and future work should explore the violation of ignorability on
fairness estimation using sensitivity analysis.

Second, the proposed algorithm focuses on assessing treatment disparities, while health
care is a dynamic process, factors that precede treatment decision-making, such as access to
care, diagnosis disparities, and testing bias can potentially have an impact on the treatment
decision. Future work should look into how to extend principal fairness to account for bias
in other stages of care delivery using sequential models.

Last but not least, this work is subject to all limitations regarding the use of EHR
for observational research (Hripcsak and Albers, 2013). In particular, the not-at-random
missingness of race in half of the patient population in the EHR database can affect the
fairness, validity, and generalizability of the method and the results.

Related Work Many metrics have been proposed for discrimination discovery. Statistical
parity (Dwork et al., 2012), equality of opportunity, mistreatment parity, and predictive
equality ?Zafar et al. (2016); Corbett-Davies et al. (2017) are the most frequently reviewed
associational metrics. Recently, a growing number of fairness notions are based on causality,
reflecting the widely accepted idea that causal reasoning is essential for addressing the
problem of fairness. By viewing discrimination as the presence of an unfair causal effect of
the sensitive attribute on the decision, Qureshi et al. (2020) presents a method for causal
discrimination discovery that adjusts for confounding using propensity score analysis. Some
causal fairness takes a step further to distinguish direct and indirect discrimination based
on path-specific effects. Zhang et al. (2019, 2016) leverage path-specific effects to discover
and remove direct and indirect discrimination from observational data. Nabi and Shpitser
(2018); Zhang and Bareinboim (2018a,b); Wang et al. (2019) developed various methods to
quantify direct and indirect discrimination. Kilbertus et al. (2017) proposed discrimination
criteria to qualitatively determine the existence of indirect discrimination. Huan et al.
(2020) proposed to assess fairness by quantifying the difference in effort to achieve the same
outcome. Kusner et al. (2017) introduced ab individual-level causal fairness criterion called
counterfactual fairness, which states that a decision is fair toward an individual if it is
the same as the decision that would have been taken in a counterfactual world where the
sensitive attributes were different. Counterfactual fairness and principal fairness consider
different variables as the intervention. Counterfactual fairness intervenes on the sensitive
attribute directly, while principal fairness assesses fairness based on potential outcomes
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under a different medical treatment, then uses this causal quantity to further assess fairness.
It is intuitively more approachable to estimate the potential outcome with respect to medical
treatment, than with respect to a sensitive attribute. Another difference is that principal
fairness is population-level fairness, while counterfactual fairness is individual-level, but can
be population-level with some modifications. The two levels of fairness do not imply each
other (Imai and Jiang, 2021).

Fairness in Healthcare Leveraging established fairness metrics commonly used in pre-
dictive models, Sun et al. (2022) proposed a set of best practices to assess the fairness of
phenotype definitions and related algorithmic fairness metrics to commonly used epidemio-
logical cohort description metrics. Pfohl et al. (2019) developed an augmented counterfac-
tual fairness criteria that extend the group fairness criteria of equalized odds for clinical risk
prediction. The importance of fair machine learning for healthcare is emphasized in several
perspectives and commentaries along with proposed guidelines (Chen et al., 2021; Gichoya
et al., 2021; Ghassemi et al., 2020), but the gap between machine learning, fairness, and
healthcare is still huge and needs to be filled to advance health equity.

References

Scott K. Aberegg and Peter B. Terry. Medical decision-making and healthcare disparities:
The physician’s role. The Journal of Laboratory and Clinical Medicine, 144(1):11–17,
July 2004.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859—877, 2017.

C. Perry Brown, Levi Ross, Ivette Lopez, Angela Thornton, and Gebre-Egziabher Kiros.
Disparities in the receipt of cardiac revascularization procedures between blacks and
whites: An analysis of secular trends. Ethnicity & Disease, 18(2 Suppl 2):S2–112–7,
2008.

Centers for Disease Control and Prevention, National Center for Health Statistics. About
Multiple Cause of Death, 1999–2020. CDC WONDER Online Database website. Atlanta,
GA: Centers for Disease Control and Prevention, 2022.

Irene Y. Chen, Emma Pierson, Sherri Rose, Shalmali Joshi, Kadija Ferryman, and Marzyeh
Ghassemi. Ethical Machine Learning in Healthcare. Annual Review of Biomedical Data
Science, 4(1):123–144, 2021.

Alexandra Chouldechova. Fair Prediction with Disparate Impact: A Study of Bias in
Recidivism Prediction Instruments. Big Data, 5(2):153–163, June 2017.

S. Corbett-Davies, E. Pierson, A. Feller, Sharad Goel, and Aziz Z Huq. Algorithmic decision
making and the cost of fairness. Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2017.

Erin Dehon, Nicole Weiss, Jonathan Jones, Whitney Faulconer, Elizabeth Hinton, and
Sarah Sterling. A Systematic Review of the Impact of Physician Implicit Racial Bias on
Clinical Decision Making. Academic Emergency Medicine, 24(8):895–904, 2017.

11



Zhang1 Richter1 Wang2 Ostropolets1 Elhadad1 Blei3 Hripcsak1

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fair-
ness through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference, ITCS ’12, pages 214–226. Association for Computing Machinery,
January 2012.
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Appendix A. Simulation Details

We simulate a data set to demonstrate the effectiveness of the algorithm in assessing the
fairness of decisions. The benefit of a simulated dataset is that we have access to the
ground truth (i.e., both potential outcomes for all individuals), which is not available in a
real clinical setting. We simulate the data as follows:

1. Simulate a binary sensitive attribute as A ∼ Bernn(0.5).

2. Simulate covariates as X ∼ Nn×m(0, 1), where n = 5, 000 is the number of patients
and m = 100 is the number of covariates.

3. Simulate potential outcomes as

Yi(0) ∼ Bern(sigmoid(x⊤
i θy0 + θd0))

Yi(1) ∼ Bern(sigmoid(x⊤
i θy1 + θd1))

where θy0 , θy1 ∼ Nm(0, 1). The effect size of the treatment θd = −1.

4. Assign patients to principal strata.

Hi =


0(stable), if Yi(0), Yi(1) = 0, 0

1(treatable), if Yi(0), Yi(1) = 1, 0

2(better-wo), if Yi(0), Yi(1) = 0, 1

3(severe), if Yi(0), Yi(1) = 1, 1.

5. Simulate decision Di conditioning on principal strata and the sensitive attribute as
Di |Hi, Ai ∼ Bern(ph,a)) where ∆(h) = ph,a − ph,a′ = 0 for h = 1, 2, and ∆(h) =
ph,1 − ph,0 = −0.2 for h = 0 and ∆(h) = ph,1 − ph,0 = 0.2 for h = 3. That is, the
decision is unfair in two of the four principal strata, and specifically, the decision
favors individuals with A = 0 in the stable stratum but favors individuals with A = 1
in the severe stratum.

Appendix B. Racial Fairness in CAD
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Figure 5: Racial fairness of decisions on revascularization. (a) The estimated proportion
of principal strata in the cohort. (b) Fairness assessment based on four fairness
metrics.
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